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One of the possible  ways to study the s tabi l i ty  of a p lasma conductor with a cur ren t  in an external  magnet ic  field 
is to consider  the conductor as an e lec t romechanica l  sys tem with an infinite number  of degrees  of freedom. If it  is 
possible  to find in explici t  form the Lagrange function descr ib ing  the motion of the conductor near  the equi l ib r ium 
position, then the s tabi l i ty  study can be made using known techniques. Specifically, for  s lender  p lasma f i laments  
experiencing Iongwave d is turbances  of the zigzag and sausage type it is possible  to find the Lagrange function for very  
general  assumptions  on the field geometry.  This makes it possible  to study the p lasma stabil i ty with respec t  to the 
d is turbances  which are  most  hazardous from the MHD viewpoint in many devices with complex magnetic  fields in which 
the p lasma has the form of a s lender  s traight  or closed f i lament .  

This method was f i r s t  used by Levin and Rabinovich [1] to study dynamic s tabi l izat ion of a p l a sma  f i lament  by a 
high-frequency quadrupole magnet ic  field, suggested by Osovets [2]. Some other  quadrupole dynamic s tabi l izat ion 
vers ions  were then studied [3] us ing the approach developed in [1]. In this paper this method is extended to the case of 
magnetic  fields of a r b i t r a r y  geometry.  In section 1 we prove a theorem in accordance with which an ideal (in the sense 
of no dissipation) e lec t romechanica l  sys tem with closed cu r ren t s  in the quas i - s t a t ionary  approximation is descr ibed  by 
the Routh function, which is the difference between the mechanical  lagrangian of the sys tem and the magnetic energy of 
the cu r r en t s  in the se l f -magnet ic  field. With r e spec t  to the mechanical  va r iab les  this function plays the role  of the 
conventional Lagrange function. In section 2 we find in general  form the express ion for the se l f -magnet ic  energy of a 
s lender  closed p la sma  conductor experiencing smooth (longwave) d i s turbances  of the zigzag sausage type. The 
express ion  for the mechanical  Lagrangian in the case of a c i r cu la r  r ing was obtained in [1]. 

1. As is known (see, for example, [4]) combining of the e lec t r ica l  and mechanical  equations of motion of moving 
conductors with cu r ren t s  into a common dynamic sys tem is accomplished by s imple addition of the mechanical  L M and 
e lec t romagnet ic  L E Lagrange functions 

L ---: L~ + LE, (1.1) 

L M :  T - -  U, L F . =  W m -  We . (1.2) 

Here L is the complete Lagrangian,  and T, U, W m, and W e are,  respect ively ,  the kinetic,  potential ,  magnetic ,  
and e lec t r ic  energies  of the system. In the quas i - s t a t iona ry  approximation in the system with closed cu r r en t s  the 
e lectr ic  energy can be neglected in compar ison  with the magnet ic  energy [4] and then 

LE = W m  . (1.3) 

If the moving conductor with a cu r r en t  is in an external  magnet ic  field, then its magnetic  energy W m can be 
writ ten in the form 

w -- S A.jdv + + S A .Vv (1.4) 

Here j is the cu r r en t  densi ty in the conductor,  A is the vector  potential  of the magnetic  field of the cu r r en t  j, and 
A e is the vector  potential of the external  magnet ic  field; in tegrat ion is per formed over the conductor volume. It  is 
obvious that the f i r s t  te rm in (1.4) is the energy of the conductor in the se l f -magnet ic  field and the second t e rm is its 
energy in the external  field. 

It is convenient  to introduce a d i sc re te  descr ip t ion  of the sys tem.  We assume that the th ree -d imens iona l  
conductor in question has a countable number  of "mechanical"  degrees  of freedom, corresponding to the general ized 
coordinates  ~m and veloci t ies  ~m. We r ep re sen t  the cu r r en t  densi ty  ] in the form of a se r i e s  in the sys tem Si(r) of 
solenoidal vector  functions,  which is complete with respect  to the pe rmis s ib l e  cu r r en t  d is t r ibut ion functions:  

co 

j(r, t ) =  ~ q((t)  S~(r) . (1.5) 
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The coeff ic ients  q~ of this  expansion a r e  the individual  "branches"  of the c u r r e n t  densi ty .  Taking q~ as 
gene ra l i z ed  ve loc i t i e s ,  we can cons ide r  the conductor  with a c u r r e n t  as  a d i s c r e t e  dynamic  sy s t em with a countable 
number  of "mechanica l"  (~m and ~m ) and " e l ec t r i c a l "  (qi and qi) coord ina tes  and ve loc i t i e s .  

Accord ing  to the equation 

rot i ro tA 4~.  7 -  j ,  ( 1 . 6 )  t~ 

the vec to r  potent ia l  A is a function of the gene ra l i z ed  ve loc i t i e s  (i and geome t r i c  coord ina tes  r ,  A = A(r ,  q), and in 
view of the l i nea r i t y  of (1.6) 

�9 t co 

A(r,  q) = ~ ~ Aj (r) qi '(t).  (1.7) 

We in t roduce  the gene ra l i zed  f luxes  Oi by the r e l a t i on  

1 L~j (~) q; (t), (1.8) (I)i (~, q') = I A ( r ,  q ' ) . S ~ ( r ) d V =  "7- 

By analogy with l i nea r  conductors  the coeff ic ients  

Lij (~) = ~ Aj (r). Si (r) dV 
0 

can be t e r m e d  the gene ra l i z ed  coeff ic ients  of the se l f - induc t ion  and mutual - induct ion  of the co r re spond ing  c u r r e n t  
b r anches  of the c u r r e n t  j in expansion (1.5). 

Taking (1.5), (1.7), (1.8) into account ,  we t r a n s f o r m  the t e r m s  of the magnet ic  energy  (1.4) 

i ~ A . j d V =  t o~ co 

i = l  3~I 

w , ~  = A~'J dV = 7 Y, q((t)  ~ :  (t, ~). 

(1.9) 

(1.10) 

By analogy with the defini t ion (1.8), in (1.10) we have in t roduced the gene ra l i zed  ex te rna l  f ie ld f luxes 

O•(t, ~) ---- fAe (t, ' r)-S~ (r)dV, 

in which in p lace  of the dependence  on qe(t) the dependence  on t appea r s  expl ic i t ly .  

Summing (1.9) and (1.10), we find the magnet ic  energy  

i co i 
wm (t, ~, q') = -z- F~ qi(t) [~-L,~ (~) q; (t) + a): (t, ~)]. (1.11) 

i = l  

With account for  (1.1), (1.3), (1.11) the comple te  Lagrangian  of the sy s t em is  wr i t t en  in the fo rm 

L (t, ~, ~', q') = LM (~, ~') + 7 -  

The function L does not depend expl ic i t ly  on qi, i . e . ,  the coord ina tes  qi a r e  cyc l ic  and this means  that the 
gene ra l i z ed  impu l ses  co r r e spond ing  to these  coord ina tes  a r e  conserved ,  

eL p~ = ~ = const. 

T h e r e f o r e  i t  is  convenient  to d e s c r i b e  the sy s t em with the aid of the Routh function R = R(t, $, ( ,  p), defined by 

the equal i ty  
co 

B = L - -  ~,  p~q(, (1.13) 
i = 1  
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whose r ight -hand side must  be expressed through the Routh var iab les  t, ~, } , p. For  the posit ion coordinates  ~m the 
Routh function plays the ro le  of the Lagrange function, while for the cyclic  coordinates  qi the function R plays the role 
of the Hamilton function. 

In the case in question the genera l ized  impulse  

i qb . p~ = 7 -  ( ~ 4- (I)~ ~) = eonst , (1.14) 

i. e . ,  the total magnetic  field flux through the cu r r e n t  branch contour qi is  conserved : 

(I)i0 = ~ ~ qbie, (1.15) 

With the aid of (1.12) and (1.14) the Routh function (1.13) can be written in the form 

R = L ~  -- ~ ~ L~jq(qj"  (1.16) 
i=I j = l  

The last term in (1.16) is the self-magnetic energy (1.9) of the conductor, taken with reversed sign, and 
therefore 

R ~-- L M  - -  W i n ,  . (1.17) 

Thus the dynamics  of the e lec t romechanica l  sys tem in question is descr ibed  with the aid of the Routh function 
(1.17), which is the difference between the conventional mechanical  Lagrangian and the se l f -magnet ic  energy of the 
sys tem.  

If we introduce the general ized potential energy (the Routh potential [5])W = U + Wins, then with account for (1.2) 
the function R can be wri t ten in the form 

R = T - -  w .  (1.18) 

Let us express  R in t e rms  of the Routh var iab les .  To do this we obviously need only t r ans fo rm the magnetic 
energy Wms. 

By vir tue  of the posit ive def ini teness  of the quadrat ic  form (1.9), det]] LijlL ~ 0, therefore we find f rom (1.8) 

oo 

�9 Lij (I) 5 . q~ = c ~, -1 (1.19) 

Here IILi'jtll is the inverse  of the mat r ix  IILijll. Using (1.19), we write Wins in the Routh var iab les  

t oo co 

W i n s  = "~-  ~ ,  ~ ,  L-~lfI)~*j �9 (1.20) 
i = 1  j = l  

In the s imples t  case of a l inear  conductor (1.20) takes the form Wins = @2/2L, where L is the sel f - induct ion 
coefficient,  and @ is the se l f -magnet ic  field flux through the conductor aper ture;  @ sat is f ies  a re la t ion  of the (1.15) 
type. 

2. Now let us examine a s lender  closed p la sma  conductor (ring), whose c r o s s - s e c t i o n  radius  a is smal l  in 
compar i son  with the charac te r i s t i c  d imens ion  of the axial line. The p la sma  is assumed to be inviscid and ideally 
conducting�9 The r ing is maintained in equi l ibr ium and s tabi l ized re la t ive  to smooth d is turbances  of the zigzag and 
sausage type by a magnetic  field, which in the general  case is a combination of constant  and quas i - s t a t iona ry  high- 
f requency fields.  Both the surface cu r r en t  flowing through the r ing  and the magnetic  field may have a h igh-frequency 
component�9 

Considering the conductor as an electromechanical system, we describe its motion about the equilibrium position 
by the Routh function (1.17). We consider the mechanical Lagrangian to be known, thereby limiting ourselves (see 
Appendix) to finding the self-magnetic energy (1.9). The latter must be expressed through the Routh variables, i.e. , 
in the final analysis through the time t and the geometric coordinates ~m describing the disturbance of the ring. 
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Let us f i r s t  a s sume  that there is no field in the plasma,  and therefore the r ing  can be considered 
superconducting.  However, to s implify the calculat ions we cons ider  the cu r r en t  induced in the superconductor  by the 
external  magnetic  field and the se l f -magnet ic  field of the superconductor  to be dis t r ibuted in a thin surface layer,  
pass ing  to the l imi t  only in the f inal  express ions .  In this case the magnetic  energy can be wri t ten in the form 

. (2.1) 

Here j is the volume densi ty  of the cu r r en t  in the f i lament ,  and A is the vector  potential of the magnetic field of 
this cur ren t ;  the in tegrat ion is per formed with respec t  to the volume of the conductor. 

We wri te  the cu r r en t  densi ty  j in the form 

j = crotM + j~ , (2.2) 

where M is a fo rmal ly  introduced magnet izat ion vector which is nonzero only within the conductor. The f i r s t  term, 
associa ted with the magnet izat ion of the medium, yields no contr ibut ion to the total c u r r e n t  flowing through the c ross  
sect ion of the f i lament ,  so that the total c u r r e n t  I is de termined only by the second t e rm of (2.1) 

I =  I j .d f  =Ij~.df. 

By vi r tue  of the l inear i ty  of the field equations 

A = A~ + At , (2.3) 

where A M and A I a re  the vector potentials  of the magnetic fields of the magnet izat ion cu r ren t  and the cu r r en t  JI' 
respect ively .  Substituting (2.2) and (2.3) into (2.1), we obtain 

We~t  i e A " ms=-~-~ ,'jidV + +I  AM'rotMdV + 

' SA,.rotMdV +-~[IAM.jIdV (2.4) +-~- 

The f i r s t  t e rm can be wri t ten in the form 

~ I A , . j ,  dV = | - ~ - .  (2.5) 

Here @ is the flux of the magnetic  field of the c u r r e n t  I through the r ing,  and L is the self- induct ion of the r ing  
for the c u r r e n t  I. The flux �9 is found f rom a re la t ion  of the (1.15) type, 

CP + ~D~ = (Do = const . (2.6) 

Here  �9 e is the flux of the external  field through the contour of the c u r r e n t  I, and <~0 is  the total flux of the field 
through the r ing,  which in view of the ideal conductivity is conserved.  F rom the formal  viewpoint O0/e is the 
conserved genera l ized  impulse ,  cor responding  to the cyclic coordinate  

q = Sldt 

The second t e rm in (2.4) t r ans fo rms  to the form 

+ SAM.rot MdV = + (~ (M • A.).dS + ~- SM.rot A .  dV . 

The integral  over  the sur face  enclosing the conductor and pass ing  everywhere  outside it equals zero. Substituting 
B M = ro t  A M into the volume integral ,  we obtain 

+ S AM.rotMdV =-~-IM.BMdV (2.7) 

with integrat ion over the volume of the conductor (there only, M ~ 0). But within the superconductor  the magnetic field 
induction, made up of the external  field induction B e and the induction B M of the magnet izat ion cu r r en t  field, equals 
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zero,  B = B e + BM = 0. Consequently,  within the conductor B M = - B e .  

Thus 

+ I A M . r o t M d V = - - + I M . B ,  dV .  (2.8) 

After  t r ans fo rmat ion  the third t e rm in (2.4) takes a f o r m  analogous to (2.8): 

+ S A I . r o t M d V = + I M . B I d V  (BI = r o t ,  AI) . (2.9) 

Here  the in tegra t ion is again taken over  the volume of the conductor.  However the field B I in the conductor,  l ike 
the c u r r en t  JI' is concent ra ted  in a thin sur face  layer  and has there  a finite magnitude. There fo re ,  in the l imi t  of an 
inf in i tes imal ly  thin l aye r  the integral  on the r ight  in (2.9) equals zero and this means that 

- ~  A i . r o t M d V =  0 . (2.10) 

After  the substi tut ion JI = (e/4~r) ro t  B I the fourth t e rm in (2.4) ean be wri t ten in the fo rm 

~ I AM'j'dV= I div(B'• dV + 8~~ z~'B1"r~ A~dV. 

The in tegra l  of div (B I x AM ) t r ans fo rms  into an in tegra l  over  an infinitely distant  sur face  and vanishes .  
Substituting B M = ro t  A M into the second integral ,  we find that 

= ~ - j  I . B M d V  �9 (2.11) 

The in tegra t ion in (2.11) mus t  be made over  the ent i re  space. However ,  as we noted previously ,  the field B I in 
the conductor  is nonzero only in a thin sur face  layer ;  the re fore  in actuali ty the integrat ion can be c a r r i e d  out over  only 
the space outside the conductor.  

Since the filament is thin and its perturbations are smooth over segments which are small in comparison with the 
perturbation wavelength, it can be considered to be a cylinder and then we can use for M, B I, and B M the expressions 
which hold in the case of a cylindrical conductor. We also assume that the external field changes very little over a 
distance of the order of the filament radius a. 

The field B M outside the superconducting cyl inder  in a uniform external  f ield has the form [6] BM --~- (a / r) ~ [Be• - -  

-- 2n (n.Be• Here  n is the unit normal  to the cyl inder  surface ,  and Be• is the external  f ield component perpendicu la r  
to the cen te r l ine  of the conductor.  On the other  hand, BI = B~ (a / r) (~ X n), where B~ = 2I  / ca ,  and ~" is the unit vec to r  
of the tangent to the cen te r l ine  of the f i lament .  It follows f rom these fo rmulas  that 

B I �9 B M : - -  (a / r)~B~B~• sin 0 . (2.12) 

where  0 is the angle in the plane of the f i l ament  c r o s s  sect ion measu red  f rom the vec to r  B~• Integrat ion of (2.12) with 
r e s p e c t  to 0 f rom 0 to 27r in the volume in tegra l  (2.11) yields zero,  s ince in the " local ly cy l indr ica l"  approximation 

I I A M . j I d V  = 0 (2.13) 

In view of (2.10) and (2.13) the se l f -magne t i c  energy W~,~ of the superconduct ing r ing in the local ly  cy l indr ica l  
approximat ion is de te rmined  only by the f i r s t  two t e r m s  of (2.4}. Summing (2.5) and (2.8) with account for  (2.6), we find 
that 

Wins = 2L M'Be dV.  (2.14) 

The se l f - induct ion  coeff ic ient  L as a function of the g e o m e t r i c  coordinates  ~m can be found f rom the fo rmula  [6] 

L =  ! !  dIz.dl~R (2.15) 

R /2 
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where dlx, d12 a re  arc e lements  of the d is turbed conductor center l ine ,  and R is the dis tance between them. In 
pa r t i cu la r ,  for a dis turbed c i r cu la r  r ing  the coefficient L was obtained in [1]. The flux @e is expressed through ~m and 
the given external  field: 

(De = I A~ .dl. (2.16) 

As for the magnet iza t ion vector  M, in the approximation being considered it is found from the known formula  for  
the magnet izat ion of a cyl inder  in a uniform external  field [6] 

M = - -  Be / 4 g  ( i  - -  n ) ,  ( 2 . 1 7 )  

where n = 0 for the longitudinal field and n = 1/2 for the t r ansve r se  field. 

If there is  now a f rozen- in  field Bi in the plasma,  its energy 

wint i I ms-- ~-~ B~ ~dV , 

which together with W ~  t (2.14) const i tutes  the complete se l f -magnet ic  energy of the p l a sma  ring. Let the field B i at the 
ini t ia l  t ime be directed along the f i lament  center l ine ,  B~ = Bi~ , and let  it near ly  uniform in each c ross  section. Then 
as a resu l t  of the ideal conductivity it will r e m a i n  near ly  uniform and col l inear  with the cen te r l ine  during the 
per tu rba t ion  as well, i . e . ,  

I Bi-dS = ( B ) i S  = (I)i = eonst, 

where <B> i is the average value of the field B i across  the section of the f i lament ,  and S is the section area.  Since the 
f i l ament  is thin, we can assume that B i = <B> i. Then 

W ~ . t _  s ~ l  dl 

with integrat ion along the f i lament  center l ine .  

The total se l f -magnet ic  field energy of the r ing  is given by the express ion  

Wms ((Do --  {De)~ i I ffP~ ~ dl - -  2L 2 M ' B e d V + - ~ - J - ~  - ' (2.18) 

where L, ~e, and M are  found f rom (2.15)-(1.17). We emphasize  that Wms is represen ted ,  although not explicit ly,  in 
the Routh va r iab les ;  s ince each t e rm in (2.18) is expressed in t e rms  of the given magnetic field, which in the general  
case depends on the t ime and the geometr ic  coordinates .  

Thus, if the mechanica l  Lagrangian is known, by de termining  f rom the given external  field and the f i lament  
per tu rba t ion  the se l f -magnet ic  energy we can find the Routh function descr ib ing the f i lament  motion about the 
equi l ib r ium position. 

The author wishes to thank M. L. Levin for his continued in te res t  in this study and valuable comments .  
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