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One of the possible ways to study the stability of a plasma conductor with a current in an external magnetic field
is to consider the conductor as an electromechanical system with an infinite number of degrees of freedom. If it is
possible to find in explicit form the Lagrange function describing the motion of the conductor near the equilibrium
position, then the stability study can be made using known techniques. Specifically, for slender plasma filaments
experiencing longwave disturbances of the zigzag and sausage type it is possible to find the Lagrange function for very
general assumptions on the field geometry. This makes it possible to study the plasma stability with respect to the
disturbances which are most hazardous from the MHD viewpoint in many devices with compliex magnetic fields in which
the plasma has the form of a slender straight or closed filament.

This method was first used by Levin and Rabinovich {1] to study dynamic stabilization of a plasma filament by a
high-frequency quadrupole magnetic field, suggested by Osovets [2]. Some other quadrupole dynamic stabilization
versions were then studied {3] using the approach developed in [1]. In this paper this method is extended to the case of
magnetic fields of arbitrary geometry. In section 1 we prove a theorem in accordance with which an ideal (in the sense
of no dissipation) electromechanical system with closed currents in the quasi-stationary approximation is described by
the Routh function, which is the difference between the mechanical lagrangian of the system and the magnetic energy of
the currents in the self-magnetic field. With respect to the mechanical variables this function plays the role of the
conventional Lagrange function. In section 2 we find in general form the expression for the self-magnetic energy of a
slender closed plasma conductor experiencing smooth (longwave) disturbances of the zigzag sausage type. The
expression for the mechanical Lagrangian in the case of a circular ring was obtained in [1].

1. As is known (see, for example, [4]) combining of the electrical and mechanical equations of motion of moving
conductors with currents into a common dynamic system is accomplished by simple addition of the mechanical Lyt and
electromagnetic Ly Lagrange functions

L=Ly+ Lg, (1.1)
Ly=T—-~U, Lg=W,—W,. (1.2)
Here L is the complete Lagrangian, and T, U, W,,, and W, are, respectively, the kinetic, potential, magnetic,

and electric energies of the system. In the quasi-stationary approximation in the system with closed currents the
electric energy can be neglected in comparison with the magnetic energy [4] and then

Lg=W,, . (1.3)

If the moving conductor with a current is in an external magnetic field, then its magnetic energy Wi, can be
written in the form
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W,,,:TSA.JdVJFTSA.Jd,V. (1.4)

Here j is the current density in the conductor, A is the vector potential of the magnetic field of the current j» and
A® ig the vector potential of the external magnetic field; integration is performed over the conductor volume. It is
obvious that the first term in (1.4} is the energy of the conductor in the self~magnetic field and the second term is its
energy in the external field.

It is convenient to introduce a discrete description of the system. We assume that the three-dimensional
conductor in question has a countable number of "mechanical" degrees of freedom, corresponding to the generalized
coordinates £, and velocities £y,, We represent the current density j in the form of a series in the system 8;(r) of
solenoidal vector functions, which is complete with respect to the permissible current distribution functions:

=3 6 S0 (1.5)

i=1
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The coefficients gf of this expansion are the individual "branches" of the current density. Taking qf as
generalized velocities, we can consider the conductor with a current as a discrete dynamic system with a countable

number of "mechanical” (¢, and gn'l) and "electrical" (g; and g;) coordinates and velocities.

According to the equation
1 4 .
rot?-robA =—c£_'| . (1.8)

the vector potential A is a function of the generalized velocities d and geometric coordinates r, A = Alr, c'j), and in
view of the linearity of (1.6)

A, q)= % § Aj(r) g @) - (1.7

=1
We introduce the generalized fluxes @; by the relation

0utt, )= §A () Si008V = 2 3 L; B0 0, (1.8)

=1

By analogy with linear conductors the coefficients
L@ = {A; ()-8, @) av

can be termed the generalized coefficients of the self-induction and mutual-induction of the corresponding current

branches of the current j in expansion (1.5).

Taking (1.5), (1.7), (1.8) into account, we transform the terms of the magnetic energy (1.4)

1 . 1S o
Wn=5 {450V =503 S Li®e 0470 (1.9)
: =1 g=1
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W,,.,:TSA AV =S () OF (B (1.10)
i=1
By analogy with the definition (1.8), in (1.10) we have introduced the generalized external field fluxes
Ot B = SAe (1.8, (v,
in which in place of the dependence on qé(t) the dependence on t appears explicitly.
Summing (1.9) and (1.10), we find the magnetic energy
. 1 3 . 1 . .
Waltn & 0) =~ 3 0, 0[5 Lo @ O+ 07 (¢, 5] (1.12)
i=1
With account for (1.1), (1.3), (1.11) the complete Lagrangian of the system is written in the form
(1.12)

.. . 19 -7 .
L 58 0) =D ®) ++ 3 6 [ Le® ¢ + 0]
i=1
The function L does not depend explicitly on gj. i.e., the coordinates g; are cyclic and this means that the
generalized impulses corresponding to these coordinates are conserved,

D= —%— == ¢onst.
9y,

Therefore it is convenient to describe the system with the aid of the Routh function R = R(t, £, £, p), defined by

the equality
R=L—3 pygi: (1.13)

==
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whose right-hand side must be expressed through the Routh variables t, £, £, p. For the position coordinates £y, the
Routh function plays the role of the Lagrange function, while for the cyclic coordinates gj the function R plays the role
of the Hamilton function.

In the case in question the generalized impulse

pi= —:— (©; + ;) = const , {1.14)

i.e., the total magnetic field flux through the current branch contour q; is conserved:

D, =D, + D (1.15)
With the aid of (1.12) and (1.14) the Routh function (1.13) can be written in the form
R = LM—E:T 2 2 Lijqi'qj‘ (1.16)
=1 j=1

The last term in (1.16) is the self-magnetic energy (1.9) of the conductor, taken with reversed sign, and
therefore

R=Ly— Wp, . (1.17)

Thus the dynamics of the electromechanical system in question is described with the aid of the Routh function
(1.17), which is the difference between the conventional mechanical Lagrangian and the self-magnetic energy of the
system.

If we introduce the generalized potential energy (the Routh potential [B) W = U+ Wy, 4, then with account for (1.2)
the function R can be written in the form

R=T-W. {1.18)

Let us express R in terms of the Routh variables. To do this we obviously need only transform the magnetic
energy Wy g.

By virtue of the positive definiteness of the quadratic form (1.9}, detll Lyjll = 0, therefore we find from (1.8)
g =c> Lja; . (1.19)
i=1

Here HLi_lel is the inverse of the matrix lILy;l. Using (1.19), we write Wy, in the Routh variables

1

W= 3 3 Li0:0; . (1.20)
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In the simplest case of a linear conductor (1.20) takes the form Wins = 3%/21, where L is the self-induction
coefficient, and ® is the self-magnetic field flux through the conductor aperture; & satisfies a relation of the (1.15)
type.

2. Now let us examine a slender closed plasma conductor (ring), whose cross-section radius a is small in
comparison with the characteristic dimension of the axial line. The plasma is assumed to be inviscid and ideally
conducting. The ring is maintained in equilibrium and stabilized relative to smooth disturbances of the zigzag and
sausage type by a magnetic field, which in the general case is a combination of constant and quasi-stationary high-

frequency fields. Both the surface current flowing through the ring and the magnetic field may have a high-frequency
component.

Considering the conductor as an electromechanical system, we describe its motion about the equilibrium position
by the Routh function (1.17). We consider the mechanical Lagrangian to be known, thereby limiting ourselves (see
Appendix) to finding the self-magnetic energy (1.9). The latter must be expressed through the Routh variables, i.e.,
in the final analysis through the time t and the geometric coordinates £y, describing the disturbance of the ring.
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Let us first assume that there is no field in the plasma, and therefore the ring can be considered
superconducting. However, to simplify the calculations we consider the current induced in the superconductor by the
external magnetic field and the self-magnetic field of the superconductor to be distributed in a thin surface layer,
passing to the limit only in the final expressions. In this case the magnetic energy can be written in the form

Wi,"fs’=i2'cSA-jdV. (2.1)

Here j is the volume density of the current in the filament, and A is the vector potential of the magnetic field of
this current; the integration is performed with respect to the volume of the conductor.

We write the current density j in the form
j=crotM +jr . (2.2)

where M is a formally introduced magnetization vector which is nonzero only within the conductor. The first term,
agssociated with the magnetization of the medium, yields no contribution to the total current flowing through the cross
section of the filament, so that the total current I is determined only by the second term of (2.1)

I:Sj-df =Sj,.df.

By virtue of the linearity of the field equations

A=Ay +A;, (2.3)

where Ay and Ag are the vector potentials of the magnetic fields of the magnetization current and the current j,
respectively. Substituting (2.2) and (2.3) into (2.1), we obtain

X . . '1
ext_ —;?SAI-MdV-k —Z—SAM-rothV—}—

1 1 .
+ (ArrotMay + - (Au-jrav (2.4)
The first term can be written in the form
1 . o
- SAI'J”’IV='—2L ) (2.5)

Here & is the flux of the magnetic field of the current I through the ring, and L is the self-induction of the ring
for the current I. The flux & is found from a relation of the (1.15) type,

® 4 O, = Oy = const . (2.6)

Here &g is the flux of the external field through the contour of the current I, and & is the total flux of the field
through the ring, which in view of the ideal conductivity is conserved. From the formal viewpoint &y/c is the
conserved generalized impulse, corresponding to the cyclic coordinate

g="S1dt.
The second term in (2.4) transforms to the form
1
—%—SAM-rothV =_;-(§3(M><AM)-ds+-2—SM-rotAMdV.

The integral over the surface enclosing the conductor and passing everywhere outside it equals zero. Substituting
By = rot Ay into the volume integral, we obtain

1
—;—SAMvrothV:TSM-BMdV (2.7)

with integration over the volume of the conductor (there only, M = 0). But within the superconductor the magnetic field
induction, made up of the external field induction Be and the induction By of the magnetization current field, equals
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zero, B = Bg + By = 0. Consequently, within the conductor By = —Be.
Thus

-;—-SAM'rothV=——%SM-B,dV. (2.8)

After transformation the third term in {2.4) takes a form analogous to (2.8):
3 ArrotMav = - (M-Bray B=rotay. (2.9)

Here the integration is again taken over the volume of the conductor. However the field By in the conductor, like
the current jj, is concentrated in a thin surface layer and has there a finite magnitude. Therefore, in the limit of an
infinitesimally thin layer the integral on the right in (2.9) equals zero and this means that

—}ZSAI-robMdV:O. (2.10)
After the substitution j, = (¢/47) rot B; the fourth term in (2.4) can be written in the form
) 1
i . . 1 P
7G_SAM.MV: de (B x Agg)dV - WSBI.rotAMdV‘

The integral of div (By X Aypp) transforms into an integral over an infinitely distant surface and vanishes.
Substituting By = rot Ay into the second integral, we find that
LA s 1 ,
%.S w-jrdV =§ESBI-BMdT . @.11)
The integration in (2.11) must be made over the entire space. However, as we noted previously, the field By in

the conductor is nonzero only in a thin surface layer; therefore in actuality the integration can be carried out over only
the space outside the conductor.

Since the filament is thin and its perturbations are smooth over segments which are small in comparison with the
perturbation wavelength, it can be considered to be a cylinder and then we can use for M, By, and By the expressions
which hold in the case of a cylindrical conductor. We also assume that the external field changes very little over a
distance of the order of the filament radius a.

The field By outside the superconducting cylinder in a uniform external field has the form (6] By = (a/r)? (B, —
— 2n (n.B,.;)] . Here n is the unit normal to the cylinder surface, and B., is the external field component perpendicular
to the centerline of the conductor. On the other hand, By =B, (a/7) (v X n), where B,==2I/ca, and T is the unit vector
of the tangent to the centerline of the filament. It follows from these formulas that

B;-By = —(a/1°BgB.  sinb , {2.12)

where 0 is the angle in the plane of the filament cross section measured from the vector B,; . Integration of (2.12) with
respect to § from 0 to 27 in the volume integral (2.11) yields zero, since in the "locally cylindrical" approximation

%SAM'J'I‘W =0. (2.13)

In view of {2.10) and (2.13) the self—magnetic energy Wix of the superconducting ring in the locally eylindrical
approximation is determined only by the first two terms of (2.4). Summing (2.5) and (2.8) with account for (2.6), we find
that

wii= G2 2 (mep,av. (2.14)

The self-induction coefficient L as a function of the geometric coordinates £,, can be found from the formula [6]

ly-dly (2.15)



where dl;, dl, are arc elements of the disturbed conductor centerline, and R is the distance between them. In
particular, for a disturbed circular ring the coefficient L was obtained in [1]. The flux &g is expressed through ¢, and
the given external field:

®e=§A‘-dl. (2.16)

As for the magnetization vector M, in the approximation being congidered it is found from the known formula for
the magnetization of a cylinder in a uniform external field [6]

=—B,/4n(1—n), (2.17)

where n = 0 for the longitudinal field and n = 1/2 for the transverse field.

If there is now a frozen-in field Bj in the plasma, its energy

wii= - \Brav,

which together with Wi (2.14) constitutes the complete self-magnetic energy of the plasma ring. Let the field Bj at the
initial time be directed along the filament centerline, B, = B,z , and let it nearly uniform in each cross section. Then
as a result of the ideal conductivity it will remain nearly uniform and collinear with the centerline during the
perturbation as well, i.e.,

SBi-dS = (B)S = ®; = const ,

where (B)j is the average value of the field B; across the section of the filament, and S is the section area. Since the
filament is thin, we can assume that By = {(B)j. Then

int _ @ dl
Wons = 8m S s

with integration along the filament centerline.

The total self-magnetic field energy of the ring is given by the expression

 (@e—@p 1 D2 dl
Wiy = Qo2 — - (uemaav 4 2 {5 (2.18)

where L, &, and M are found from (2.15)~(1.17). We emphasize that Wy,g is represented, although not explicitly, in
the Routh variables; since each term in (2.18) is expressed in terms of the given magnetic field, which in the general
case depends on the time and the geometric coordinates.

Thus, if the mechanical Lagrangian is known, by determining from the given external field and the filament
perturbation the self-magnetic energy we can find the Routh function describing the filament motion about the
equilibrium position.

The author wishes to thank M. L. Levin for his continued interest in this study and valuable comments.
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